An adaptive sparse grid approach for time series prediction

نویسندگان

  • B. Bohn
  • M. Griebel
  • Bastian Bohn
  • Michael Griebel
چکیده

A real valued, deterministic and stationary time series can be embedded in a — sometimes high-dimensional — real vector space. This leads to a one-to-one relationship between the embedded, time dependent vectors in R d and the states of the underlying, unknown dynamical system that determines the time series. The embedded data points are located on an m-dimensional manifold (or even fractal) called attractor of the time series. Takens' theorem then states that an upper bound for the embedding dimension d can be given by d ≤ 2m + 1. The task of predicting future values thus becomes, together with an estimate on the manifold dimension m, a scattered data regression problem in d dimensions. In contrast to most of the common regression algorithms like support vector machines (SVMs) or neural networks, which follow a data-based approach, we employ in this paper a sparse grid-based discretization technique. This allows us to efficiently handle huge amounts of training data in moderate dimensions. Extensions of the basic method lead to space-and dimension-adaptive sparse grid algorithms. They become useful if the attractor is only located in a small part of the embedding space or if its dimension was chosen too large. We discuss the basic features of our sparse grid prediction method and give the results of numerical experiments for time series with both, synthetic data and real life data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Sliding Mode Control of Multi-DG, Multi-Bus Grid-Connected Microgrid

This paper proposes a new adaptive controller for the robust control of a grid-connected multi-DG microgrid (MG) with the main aim of output active power and reactive power regulation as well as busbar voltage regulation of DGs. In addition, this paper proposes a simple systematic method for the dynamic analysis including the shunt and series faults that are assumed to occur in the MG. The pres...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data

Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sp...

متن کامل

A new adaptive exponential smoothing method for non-stationary time series with level shifts

Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012